Autor: |
Peng Tang, Yuehong Dai, Junfeng Chen |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Aerospace, Vol 9, Iss 1, p 42 (2022) |
Druh dokumentu: |
article |
ISSN: |
2226-4310 |
DOI: |
10.3390/aerospace9010042 |
Popis: |
This paper studies the multi-source disturbances attenuation problem on the yaw motion of unmanned aerial helicopter with a variable-speed rotor. The yaw motion subsystem dominated by an electrically-driven tail rotor is firstly introduced, and its trajectory accuracy requires particularly close attention. To this end, we establish a fourth-order yaw error dynamic equation; subsequently, a nonlinear robust control scheme based on optimal H∞ principle is developed, consisting of laws of virtual functions, parameter estimation and a compensation signal. The novelty of this scheme lies in unifying the techniques to deal with the uncertain parameters, noise perturbations, actuator output fault and external airflow turbulence into a simple framework. Stability analysis guarantees that the yaw closed-loop system has the predefined performance of disturbance suppression in the sense of a finite L2-gain. Comparison results with the extended state observer based backstepping controller verify the effectiveness and superior performance of proposed scheme in an aircraft prototype. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|