Soft computing techniques for predicting the properties of raw rice husk concrete bricks using regression-based machine learning approaches

Autor: Nakkeeran Ganasen, L. Krishnaraj, Kennedy C. Onyelowe, George Uwadiegwu Alaneme, Obeten Nicholas Otu
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Scientific Reports, Vol 13, Iss 1, Pp 1-21 (2023)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-023-41848-1
Popis: Abstract In this study, the replacement of raw rice husk, fly ash, and hydrated lime for fine aggregate and cement was evaluated in making raw rice husk-concrete brick. This study optimizes compressive strength, water absorption, and dry density of concrete brick containing recycled aggregates via Response Surface Methodology. The optimized model's accuracy is validated through Artificial Neural Network and Multiple Linear Regression. The Artificial Neural Network model captured the 100 data's variability from RSM optimization as indicated by the high R threshold- (R > 0.9997), (R > 0.99993), (R > 0.99997). Multiple Linear Regression model captured the data's variability the decent R2 threshold confirming- (R2 > 0.9855), (R2 > 0.9768), (R2 > 0.9155). The raw rice husk-concrete brick 28-day compressive strength, water absorption, and density prediction were more accurate when using Response Surface Methodology and Artificial Neural Network compared to Multiple Linear Regression. Lower MAE and RMSE, coupled with higher R2 values, unequivocally indicate the model's superior performance. Additionally, employing sensitivity analysis, the influence of the six input parameters on outcomes was assessed. Machine learning aids efficient prediction of concrete's mechanical properties, conserving time, labor, and resources in civil engineering.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje