Autor: |
Debby D. Wang, Wenhui Wu, Ran Wang |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of Cheminformatics, Vol 16, Iss 1, Pp 1-15 (2024) |
Druh dokumentu: |
article |
ISSN: |
1758-2946 |
DOI: |
10.1186/s13321-023-00795-9 |
Popis: |
Abstract The launch of AlphaFold series has brought deep-learning techniques into the molecular structural science. As another crucial problem, structure-based prediction of protein-ligand binding affinity urgently calls for advanced computational techniques. Is deep learning ready to decode this problem? Here we review mainstream structure-based, deep-learning approaches for this problem, focusing on molecular representations, learning architectures and model interpretability. A model taxonomy has been generated. To compensate for the lack of valid comparisons among those models, we realized and evaluated representatives from a uniform basis, with the advantages and shortcomings discussed. This review will potentially benefit structure-based drug discovery and related areas. Graphical Abstract |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|