Autor: |
Maksim V. Nikulin, Viktor V. Drobot, Yevgeniya I. Shurubor, Vytas K. Švedas, Boris F. Krasnikov |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Molecules, Vol 28, Iss 17, p 6178 (2023) |
Druh dokumentu: |
article |
ISSN: |
1420-3049 |
DOI: |
10.3390/molecules28176178 |
Popis: |
Biomedical studies of the role of organic selenium compounds indicate that the amino acid derivative of L-selenomethionine, α-ketomethylselenobutyrate (KMSB), can be considered a potential anticancer therapeutic agent. It was noted that, in addition to a direct effect on redox signaling molecules, α-ketoacid metabolites of organoselenium compounds are able to change the status of histone acetylation and suppress the activity of histone deacetylases in cancer cells. However, the wide use of KMSB in biomedical research is hindered not only by its commercial unavailability, but also by the fact that there is no detailed information in the literature on possible methods for the synthesis of this compound. This paper describes in detail the procedure for obtaining a high-purity KMSB preparation (purity ≥ 99.3%) with a yield of the target product of more than 67%. L-amino acid oxidase obtained from C. adamanteus was used as a catalyst for the conversion of L-selenomethionine to KMSB. If necessary, this method can be used as a basis both for scaling up the synthesis of KMSB and for developing cost-effective biocatalytic technologies for obtaining other highly purified drugs. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|