Dynamic Vertical Mapping with Crowdsourced Smartphone Sensor Data

Autor: Georgios Pipelidis, Omid Reza Moslehi Rad, Dorota Iwaszczuk, Christian Prehofer, Urs Hugentobler
Jazyk: angličtina
Rok vydání: 2018
Předmět:
Zdroj: Sensors, Vol 18, Iss 2, p 480 (2018)
Druh dokumentu: article
ISSN: 1424-8220
DOI: 10.3390/s18020480
Popis: In this paper, we present our novel approach for the crowdsourced dynamic vertical mapping of buildings. For achieving this, we use the barometric sensor of smartphones to estimate altitude differences and the moment of the outdoor to indoor transition to extract reference pressure. We have identified the outdoor–indoor transition (OITransition) via the fusion of four different sensors. Our approach has been evaluated extensively over a period of 6 months in different humidity, temperature, and cloud-coverage situations, as well as over different hours of the day, and it is found that it can always predict the correct number of floors, while it can approximate the altitude with an average error of 0.5 m.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje