Bayesian regression and model selection for isothermal titration calorimetry with enantiomeric mixtures

Autor: Trung Hai Nguyen, Van N. T. La, Kyle Burke, David D. L. Minh
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: PLoS ONE, Vol 17, Iss 9 (2022)
Druh dokumentu: article
ISSN: 1932-6203
Popis: Bayesian regression is performed to infer parameters of thermodynamic binding models from isothermal titration calorimetry measurements in which the titrant is an enantiomeric mixture. For some measurements the posterior density is multimodal, indicating that additional data with a different protocol are required to uniquely determine the parameters. Models of increasing complexity—two-component binding, racemic mixture, and enantiomeric mixture—are compared using model selection criteria. To precisely estimate one of these criteria, the Bayes factor, a variation of bridge sampling is developed.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje