Multi-Level Machine Learning Model to Improve the Effectiveness of Predicting Customers Churn Banks

Autor: Ngo Van-Binh, Vu Van-Hieu
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Cybernetics and Information Technologies, Vol 24, Iss 3, Pp 3-20 (2024)
Druh dokumentu: article
ISSN: 1314-4081
DOI: 10.2478/cait-2024-0022
Popis: This study presents a novel multi-level Stacking model designed to enhance the accuracy of customer churn prediction in the banking sector, a critical aspect for improving customer retention. Our approach integrates four distinct machine-learning algorithms – K-Nearest Neighbor (KNN), XGBoost, Random Forest (RF), and Support Vector Machine (SVM) – at the first level (Level 0). These algorithms generate initial predictions, which are then combined and fed into higher-level models (Level 1) comprising Logistic Regression, Recurrent Neural Network (RNN), and Deep Neural Network (DNN).
Databáze: Directory of Open Access Journals