Autor: |
Gabriele Fici, Alessio Langiu, Giosuè Lo Bosco, Riccardo Rizzo |
Jazyk: |
angličtina |
Rok vydání: |
2017 |
Předmět: |
|
Zdroj: |
AIMS Medical Science, Vol 5, Iss 1, Pp 23-32 (2017) |
Druh dokumentu: |
article |
ISSN: |
2375-1576 |
DOI: |
10.3934/medsci.2018.1.23 |
Popis: |
Bacteria classification has been deeply investigated with different tools for many purposes,such as early diagnosis, metagenomics, phylogenetics. Classification methods based on ribosomalDNA sequences are considered a reference in this area. We present a new classificatier for bacteriaspecies based on a dissimilarity measure of purely combinatorial nature. This measure is based onthe notion of Minimal Absent Words, a combinatorial definition that recently found applications inbioinformatics. We can therefore incorporate this measure into a probabilistic neural network in orderto classify bacteria species. Our approach is motivated by the fact that there is a vast literature on thecombinatorics of Minimal Absent Words in relation with the degree of repetitiveness of a sequence.We ran our experiments on a public dataset of Ribosomal RNA Sequences from the complex 16S. Ourapproach showed a very high score in the accuracy of the classification, proving hence that our methodis comparable with the standard tools available for the automatic classification of bacteria species. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|