Popis: |
With the development of Industry 4.0, the cooperation between robots and people is increasing. Therefore, man—machine security is the first problem that must be solved. In this paper, we proposed a novel methodology of active collision avoidance to safeguard the human who enters the robot's workspace. In the conventional approaches of obstacle avoidance, it is not easy for robots and humans to work safely in the common unstructured environment due to the lack of the intelligence. In this system, one Kinect is employed to monitor the workspace of the robot and detect anyone who enters the workspace of the robot. Once someone enters the working space, the human will be detected, and the skeleton of the human can be calculated in real time by the Kinect. The measurement errors increase over time, owing to the tracking error and the noise of the device. Therefore we use an Unscented Kalman Filter (UKF) to estimate the positions of the skeleton points. We employ an expert system to estimate the behavior of the human. Then let the robot avoid the human by taking different measures, such as stopping, bypassing the human or getting away. Finally, when the robot needs to execute bypassing the human in real time, to achieve this, we adopt a method called artificial potential field method to generate a new path for the robot. By using this active collision avoidance, the system can achieve the purpose that the robot is unable to touch on the human. This proposed system highlights the advantage that during the process, it can first detect the human, then analyze the motion of the human and finally safeguard the human. We experimentally tested the active collision avoidance system in real-world applications. The results of the test indicate that it can effectively ensure human security. |