Autor: |
Vladislav S. Shikalov, Diana A. Katanaeva, Tomila M. Vidyuk, Alexander A. Golyshev, Vladimir F. Kosarev, Elena E. Kornienko, Alexander G. Malikov, Victor V. Atuchin |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Journal of Composites Science, Vol 7, Iss 12, p 500 (2023) |
Druh dokumentu: |
article |
ISSN: |
2504-477X |
DOI: |
10.3390/jcs7120500 |
Popis: |
Laser processing is an effective post-treatment method for modifying the structure and improving the properties of cold-sprayed coatings. In the present work, the possibility of fabricating a hard and wear-resistant Ti-based cermet coating by cold spray followed by laser remelting was studied. A mixture of titanium and chromium carbide powders in a ratio of 60/40 wt.% was deposited by cold spray onto a titanium alloy substrate, which ensured the formation of a composite coating with a residual chromium carbide content of about 12–13 wt.%. The optimal values of laser beam power (2 kW) and scanning speed (75 mm/s) leading to the qualitative fusion of the coating with the substrate with minimal porosity and absence of defects were revealed. The microstructure and phase composition of as-sprayed and remelted coatings were examined with SEM, EDS and XRD analysis. It was shown that the phase composition of the as-sprayed coating did not change compared to the feedstock mixture, while the remelted coating was transformed into a β-Ti(Cr) solid solution with uniformly distributed nonstoichiometric TiCx particles. Due to the change in microstructure and phase composition, the remelted coating was characterized by an attractive combination of higher microhardness (437 HV0.1) and lower specific wear rate (0.25 × 10−3 mm3/N × m) under dry sliding wear conditions compared to the as-sprayed coating and substrate. Laser remelting of the coating resulted in a change in the dominant wear mechanism from oxidative–abrasive to oxidative–adhesive with delamination. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|