A Stable Large-Scale Multiobjective Optimization Algorithm with Two Alternative Optimization Methods
Autor: | Tianyu Liu, Junjie Zhu, Lei Cao |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Entropy, Vol 25, Iss 4, p 561 (2023) |
Druh dokumentu: | article |
ISSN: | 25040561 1099-4300 |
DOI: | 10.3390/e25040561 |
Popis: | For large-scale multiobjective evolutionary algorithms based on the grouping of decision variables, the challenge is to design a stable grouping strategy to balance convergence and population diversity. This paper proposes a large-scale multiobjective optimization algorithm with two alternative optimization methods (LSMOEA-TM). In LSMOEA-TM, two alternative optimization methods, which adopt two grouping strategies to divide decision variables, are introduced to efficiently solve large-scale multiobjective optimization problems. Furthermore, this paper introduces a Bayesian-based parameter-adjusting strategy to reduce computational costs by optimizing the parameters in the proposed two alternative optimization methods. The proposed LSMOEA-TM and four efficient large-scale multiobjective evolutionary algorithms have been tested on a set of benchmark large-scale multiobjective problems, and the statistical results demonstrate the effectiveness of the proposed algorithm. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |