MoO3@MoS2 Core-Shell Structured Hybrid Anode Materials for Lithium-Ion Batteries

Autor: Muhammad Faizan, Sajjad Hussain, Mobinul Islam, Ji-Young Kim, Daseul Han, Jee-Hwan Bae, Dhanasekaran Vikraman, Basit Ali, Saleem Abbas, Hyun-Seok Kim, Aditya Narayan Singh, Jongwan Jung, Kyung-Wan Nam
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Nanomaterials, Vol 12, Iss 12, p 2008 (2022)
Druh dokumentu: article
ISSN: 2079-4991
DOI: 10.3390/nano12122008
Popis: We explore a phase engineering strategy to improve the electrochemical performance of transition metal sulfides (TMSs) in anode materials for lithium-ion batteries (LIBs). A one-pot hydrothermal approach has been employed to synthesize MoS2 nanostructures. MoS2 and MoO3 phases can be readily controlled by straightforward calcination in the (200–300) °C temperature range. An optimized temperature of 250 °C yields a phase-engineered MoO3@MoS2 hybrid, while 200 and 300 °C produce single MoS2 and MoO3 phases. When tested in LIBs anode, the optimized MoO3@MoS2 hybrid outperforms the pristine MoS2 and MoO3 counterparts. With above 99% Coulombic efficiency (CE), the hybrid anode retains its capacity of 564 mAh g−1 after 100 cycles, and maintains a capacity of 278 mAh g−1 at 700 mA g−1 current density. These favorable characteristics are attributed to the formation of MoO3 passivation surface layer on MoS2 and reactive interfaces between the two phases, which facilitate the Li-ion insertion/extraction, successively improving MoO3@MoS2 anode performance.
Databáze: Directory of Open Access Journals