Hamiltonian formulations of quasilinear theory for magnetized plasmas

Autor: Alain J. Brizard, Anthony A. Chan
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Frontiers in Astronomy and Space Sciences, Vol 9 (2022)
Druh dokumentu: article
ISSN: 2296-987X
DOI: 10.3389/fspas.2022.1010133
Popis: Hamiltonian formulations of quasilinear theory are presented for the cases of uniform and nonuniform magnetized plasmas. First, the standard quasilinear theory of Kennel and Engelmann (Kennel, Phys. Fluids, 1966, 9, 2377) is reviewed and reinterpreted in terms of a general Hamiltonian formulation. Within this Hamiltonian representation, we present the transition from two-dimensional quasilinear diffusion in a spatially uniform magnetized background plasma to three-dimensional quasilinear diffusion in a spatially nonuniform magnetized background plasma based on our previous work (Brizard and Chan, Phys. Plasmas, 2001, 8, 4762–4771; Brizard and Chan, Phys. Plasmas, 2004, 11, 4220–4229). The resulting quasilinear theory for nonuniform magnetized plasmas yields a 3 × 3 diffusion tensor that naturally incorporates quasilinear radial diffusion as well as its synergistic connections to diffusion in two-dimensional invariant velocity space (e.g., energy and pitch angle).
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje