Triphenylphosphonium-Functionalized Gold Nanorod/Zinc Oxide Core–Shell Nanocomposites for Mitochondrial-Targeted Phototherapy

Autor: Ara Joe, Hyo-Won Han, Yu-Ra Lim, Panchanathan Manivasagan, Eue-Soon Jang
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Pharmaceutics, Vol 16, Iss 2, p 284 (2024)
Druh dokumentu: article
ISSN: 1999-4923
DOI: 10.3390/pharmaceutics16020284
Popis: Phototherapies, such as photothermal therapy (PTT) and photodynamic therapy (PDT), combined with novel all-in-one light-responsive nanocomposites have recently emerged as new therapeutic modalities for the treatment of cancer. Herein, we developed novel all-in-one triphenylphosphonium-functionalized gold nanorod/zinc oxide core–shell nanocomposites (CTPP-GNR@ZnO) for mitochondrial-targeted PTT/PDT owing to their good biocompatibility, tunable and high optical absorption, photothermal conversion efficiency, highest reactive oxygen species (ROS) generation, and high mitochondrial-targeting capability. Under laser irradiation of 780 nm, the CTPP-GNR@ZnO core–shell nanocomposites effectively produced heat in addition to generating ROS to induce cell death, implying a synergistic effect of mild PTT and PDT in combating cancer. Notably, the in vitro PTT/PDT effect of CTPP-GNR@ZnO core–shell nanocomposites exhibited effective cell ablation (95%) and induced significant intracellular ROS after the 780 nm laser irradiation for 50 min, indicating that CTPP in CTPP-GNR@ZnO core–shell nanocomposites can specifically target the mitochondria of CT-26 cells, as well as generate heat and ROS to completely kill cancer cells. Overall, this light-responsive nanocomposite-based phototherapy provides a new approach for cancer synergistic therapy.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje