Autor: |
Yucheng Wang, Eilis Hannon, Olivia A. Grant, Tyler J. Gorrie-Stone, Meena Kumari, Jonathan Mill, Xiaojun Zhai, Klaus D. McDonald-Maier, Leonard C. Schalkwyk |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
BMC Genomics, Vol 22, Iss 1, Pp 1-11 (2021) |
Druh dokumentu: |
article |
ISSN: |
1471-2164 |
DOI: |
10.1186/s12864-021-07675-2 |
Popis: |
Abstract Background Sex is an important covariate of epigenome-wide association studies due to its strong influence on DNA methylation patterns across numerous genomic positions. Nevertheless, many samples on the Gene Expression Omnibus (GEO) frequently lack a sex annotation or are incorrectly labelled. Considering the influence that sex imposes on DNA methylation patterns, it is necessary to ensure that methods for filtering poor samples and checking of sex assignment are accurate and widely applicable. Results Here we presented a novel method to predict sex using only DNA methylation beta values, which can be readily applied to almost all DNA methylation datasets of different formats (raw IDATs or text files with only signal intensities) uploaded to GEO. We identified 4345 significantly (p |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|