Insighting Drivers of Population Exposure to Ambient Ozone (O3) Concentrations across China Using a Spatiotemporal Causal Inference Method

Autor: Junming Li, Jing Xue, Jing Wei, Zhoupeng Ren, Yiming Yu, Huize An, Xingyan Yang, Yixue Yang
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Remote Sensing, Vol 15, Iss 19, p 4871 (2023)
Druh dokumentu: article
ISSN: 2072-4292
DOI: 10.3390/rs15194871
Popis: Ground-level ozone (O3) is a well-known atmospheric pollutant aside from particulate matter. China as a global populous country is facing serious surface O3 pollution. To detect the complex spatiotemporal transformation of the population exposure to ambient O3 pollution in China from 2005 to 2019, the Bayesian multi-stage spatiotemporal evolution hierarchy model was employed. To insight the drivers of the population exposure to ambient O3 pollution in China, a Bayesian spatiotemporal LASSO regression model (BST-LASSO-RM) and a spatiotemporal propensity score matching (STPSM) were firstly applied; then, a spatiotemporal causal inference method integrating the BST-LASSO-RM and STPSM was presented. The results show that the spatial pattern of the annual population-weighted ground-level O3 (PWGLO3) concentrations, representing population exposure to ambient O3, in China has transformed since 2014. Most regions (72.2%) experienced a decreasing trend in PWGLO3 pollution in the early stage, but in the late stage, most areas (79.3%) underwent an increasing trend. Some drivers on PWGLO3 concentrations have partial spatial spillover effects. The PWGLO3 concentrations in a region can be driven by this region’s surrounding areas’ economic factors, wind speed, and PWGLO3 concentrations. The major drivers with six local factors in 2005–2014 changed to five local factors and one spatial adjacent factor in 2015–2019. The driving of the traffic and green factors have no spatial spillover effects. Three traffic factors showed a negative driving effect in the early stage, but only one, bus ridership per capita (BRPC), retains the negative driving effect in the late stage. The factor with the maximum driving contribution is BRPC in the early stage, but PM2.5 pollution in the late stage, and the corresponding driving contribution is 17.57%. Green area per capita and urban green coverage rates have positive driving effects. The driving effects of the climate factors intensified from the early to the later stage.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje