Autor: |
Cayetano Herrera, M. Alice Pinto, Mar Leza, Iris Alemany, José A. Jurado‐Rivera |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Ecology and Evolution, Vol 14, Iss 7, Pp n/a-n/a (2024) |
Druh dokumentu: |
article |
ISSN: |
2045-7758 |
DOI: |
10.1002/ece3.70029 |
Popis: |
Abstract Genetic diversity is an important biological trait for a successful invasion. During the expansion across a new territory, an invasive species may face unprecedented ecological conditions that will determine its demography and genetic diversity. The first record of the yellow‐legged hornet (Vespa velutina) in Europe dates back to 2004 in France, from where it has successfully spread through a large territory in the continent, including Italy, Spain and Portugal. Integrative approaches offer a powerful strategy to detect and understand patterns of genetic variation in central and marginal populations. Here, we have analysed the relationship between genetic diversity parameters inferred from 15 V. velutina nuclear DNA microsatellite loci, and geographical and environmental drivers, such as the distance to the introduction focus, environmental suitability and distance to native and invasive niche centroids. Our results revealed a central–marginal dynamic, where allelic richness decreased towards the edge of the expansion range. The low environmental suitability of the territories invaded by marginal populations could prevent a diverse population from establishing and reducing the genetic diversity in populations at the expansion edge. Moreover, Markov chain Monte Carlo analysis showed both geographical and environmental distances were influencing population genetic differentiation. This study highlights the importance of combining genetic analysis with geographical and environmental drivers to understand genetic trends of invasive species to new environment. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|