Popis: |
The climate change scenario has increased the severity and frequency of drought stress, which limits the growth and yield of rice worldwide. There is a dire need to select drought-tolerant rice varieties to sustain crop production under water scarcity. Therefore, the present study effectively combined morpho-physiological and biochemical approaches with the technology of infrared thermal imaging (IRTI) for a reliable selection of drought-tolerant genotypes. Initially, we studied 28 rice genotypes including 26 advance lines and three varieties for water stress tolerance under net house conditions. Three genotypes NIBGE-DT-02, KSK-133, and NIBGE-DT-11 were selected based on the Standard Evaluation System (SES) scoring for drought tolerance. NIBGE-DT-02 showed tolerance to polyethylene glycol (20%) induced osmotic stress indicated by a minimum reduction in seedling length, biomass, chlorophyll content, and increased leaf proline content as compared to susceptible varieties under a hydroponic system. NIBGE-DT-02 was further evaluated for water withholding at varying growth stages, i.e., 30 and 60 days after transplantation (DAT) in pots under net house conditions. NIBGE-DT-02 showed a significantly lower reduction (35.9%) in yield as compared to a susceptible variety (78.06%) under water stress at 60 DAT with concomitant induction of antioxidant enzymes such as peroxidase, catalase, and polyphenol oxidase. A significant increase (45.9%) in proline content, a low increase (7.5%) in plant temperature, along with a low reduction in relative water content (RWC) (5.5%), and membrane stability index (MSI) (9%) were observed under water stress at 60 DAT as compared to the well-watered control. Pearson correlation analysis showed the strong correlation of shoot length with MSI and root length with RWC in rice genotypes at the later growth stage. Furthermore, Regression analysis indicated a negative correlation between plant temperature of NIBGE-DT-02 and proline, RWC, MSI, and peroxidase enzyme under variable water stress conditions. All these responses collectively validated the adaptive response of selected genotypes under water stress during different growth stages. Tolerant genotypes can be used in breeding programs aimed at improving drought tolerance and can expand rice cultivation. Furthermore, this study provides a foundation for future research directed to utilize IRTI as a fast and non-destructive approach for the selection of potent rice genotypes better adapted to water scarcity from wide germplasm collection. |