Extraction of Lilium davidii var. unicolor Planting Information Based on Deep Learning and Multi-Source Data
Autor: | Yinfang Shi, Puhan Zhang, Zhaoyang Wang |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2024 |
Předmět: | |
Zdroj: | Sensors, Vol 24, Iss 5, p 1543 (2024) |
Druh dokumentu: | article |
ISSN: | 24051543 1424-8220 |
DOI: | 10.3390/s24051543 |
Popis: | Accurate extraction of crop acreage is an important element of digital agriculture. This study uses Sentinel-2A, Sentinel-1, and DEM as data sources to construct a multidimensional feature dataset encompassing spectral features, vegetation index, texture features, terrain features, and radar features. The Relief-F algorithm is applied for feature selection to identify the optimal feature dataset. And the combination of deep learning and the random forest (RF) classification method is utilized to identify lilies in Qilihe District and Yuzhong County of Lanzhou City, obtain their planting structure, and analyze their spatial distribution characteristics in Gansu Province. The findings indicate that terrain features significantly contribute to ground object classification, with the highest classification accuracy when the number of features in the feature dataset is 36. The precision of the deep learning classification method exceeds that of RF, with an overall classification accuracy and kappa coefficient of 95.9% and 0.934, respectively. The Lanzhou lily planting area is 137.24 km2, and it primarily presents a concentrated and contiguous distribution feature. The study’s findings can serve as a solid scientific foundation for Lanzhou City’s lily planting structure adjustment and optimization and a basis of data for local lily yield forecasting, development, and application. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |