A standard form in (some) free fields: How to construct minimal linear representations

Autor: Schrempf Konrad
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Open Mathematics, Vol 18, Iss 1, Pp 1365-1386 (2020)
Druh dokumentu: article
ISSN: 2391-5455
DOI: 10.1515/math-2020-0076
Popis: We describe a standard form for the elements in the universal field of fractions of free associative algebras (over a commutative field). It is a special version of the normal form provided by Cohn and Reutenauer and enables the use of linear algebra techniques for the construction of minimal linear representations (in standard form) for the sum and the product of two elements (given in a standard form). This completes “minimal” arithmetic in free fields since “minimal” constructions for the inverse are already known. The applications are wide: linear algebra (over the free field), rational identities, computing the left gcd of two non-commutative polynomials, etc.
Databáze: Directory of Open Access Journals