Autor: |
Ziying Li, Kaiyuan Song, Yu Chen, Qijing Huang, Lujia You, Li Yu, Baiyang Chen, Zihang Yuan, Yaqin Xu, Yue Su, Lintai Da, Xinyuan Zhu, Ruijiao Dong |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 15, Iss 1, Pp 1-14 (2024) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-024-51122-1 |
Popis: |
Abstract Protein therapeutics are essential in treating various diseases, but their inherent biological instability and short circulatory half-lives in vivo pose challenges. Herein, a quantitative one-pot iterative living polymerization technique is reported towards precision control over the molecular structure and monomer sequence of protein-polymer conjugates, aiming to maximize physicochemical properties and biological functions of proteins. Using this quantitative one-pot iterative living polymerization technique, we successfully develop a series of sequence-controlled protein-multiblock polymer conjugates, enhancing their biostability, pharmacokinetics, cellular uptake, and in vivo biodistribution. All-atom molecular dynamics simulations are performed to disclose the definite sequence-function relationship of the bioconjugates, further demonstrating their sequence-encoded cellular uptake behavior and in vivo biodistribution in mice. Overall, this work provides a robust approach for creating precision protein-polymer conjugates with defined sequences and advanced functions as a promising candidate in disease treatment. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|