Observation of a new pedestal stability regime in MAST Upgrade H-mode plasmas

Autor: K. Imada, T.H. Osborne, S. Saarelma, J.G. Clark, A. Kirk, M. Knolker, R. Scannell, P.B. Snyder, C. Vincent, H.R. Wilson, the MAST Upgrade Team
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Nuclear Fusion, Vol 64, Iss 8, p 086002 (2024)
Druh dokumentu: article
ISSN: 1741-4326
0029-5515
DOI: 10.1088/1741-4326/ad5219
Popis: The first pedestal stability and structure analysis on the new MAST Upgrade (MAST-U) spherical tokamak H-mode plasmas is presented. Our results indicate that MAST-U pedestals are close to the low toroidal mode number ( n ) peeling branch of the peeling-ballooning instability, in contrast with MAST H-mode pedestals which were deeply in the high- n ballooning branch. This offers the possibility of reaching the ELM-free quiescent H-mode (Burrell et al 2005 Plasma Phys. Control. Fusion 47 B37–B52) or high-performance super H-mode (Snyder et al 2015 Nucl. Fusion 55 083026; Snyder et al 2019 Nucl. Fusion 59 086017) regimes. In addition, the coupling between the peeling and ballooning branches is weak in MAST-U, suggesting that a path to very high pedestal pressure gradient at high density may exist with sufficient heating power. A possible explanation for the differences between MAST and MAST-U pedestal stability is given in terms of plasma shaping parameters, in particular squareness and elongation, as well as the pedestal top temperature and collisionality.
Databáze: Directory of Open Access Journals