Popis: |
The introduction of a dynamic model in robot trajectory tracking control design can significantly improve its trajectory tracking accuracy, but there are many uncertainties in the robot dynamic model which can be dealt with through robust control and adaptive control. The prevailing robust control as well as adaptive control methods require real-time computation of robot dynamics, but the extreme complexity of the robot dynamics equations makes it difficult to apply these methods in real industrial systems. To this end, this article proposes a robust adaptive control method based on the desired trajectory, which uses the desired trajectory to compute most of the control terms offline, including the robot’s nominal dynamics and regression matrices, and substantially reduces the need for real-time computation of the feedback signals. The robust term modifies the perturbation of the inertial parameters of the links, the adaptive term learns the friction coefficients of the joints online, and an additional compensation term is designed to satisfy the Lyapunov stability condition of the system. Finally, taking a universal manipulator as the experimental platform, the control performances of different control methods are compared to show the feasibility of the controller and the effective reduction in real-time computational complexity. |