Autor: |
Adam Brzeski, Tomasz Dziubich, Henryk Krawczyk |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Sensors, Vol 23, Iss 24, p 9717 (2023) |
Druh dokumentu: |
article |
ISSN: |
1424-8220 |
DOI: |
10.3390/s23249717 |
Popis: |
The presented paper investigates the problem of endoscopic bleeding detection in endoscopic videos in the form of a binary image classification task. A set of definitions of high-level visual features of endoscopic bleeding is introduced, which incorporates domain knowledge from the field. The high-level features are coupled with respective feature descriptors, enabling automatic capture of the features using image processing methods. Each of the proposed feature descriptors outputs a feature activation map in the form of a grayscale image. Acquired feature maps can be appended in a straightforward way to the original color channels of the input image and passed to the input of a convolutional neural network during the training and inference steps. An experimental evaluation is conducted to compare the classification ROC AUC of feature-extended convolutional neural network models with baseline models using regular color image inputs. The advantage of feature-extended models is demonstrated for the Resnet and VGG convolutional neural network architectures. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|