Autor: |
Haiyang Wen, Xiya Yang, Ruiyuan Huang, Duo Zheng, Jingbo Yuan, Hongxin Hong, Jialong Duan, Yunlong Zi, Qunwei Tang |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Advanced Science, Vol 10, Iss 22, Pp n/a-n/a (2023) |
Druh dokumentu: |
article |
ISSN: |
2198-3844 |
DOI: |
10.1002/advs.202302009 |
Popis: |
Abstract The launching of 5G technology provides excellent opportunity for the prosperous development of Internet of Things (IoT) devices and intelligent wireless sensor nodes. However, deploying of tremendous wireless sensor nodes network presents a great challenge to sustainable power supply and self‐powered active sensing. Triboelectric nanogenerator (TENG) has shown great capability for powering wireless sensors and work as self‐powered sensors since its discovery in 2012. Nevertheless, its inherent property of large internal impedance and pulsed “high‐voltage and low‐current” output characteristic seriously limit its direct application as stable power supply. Herein, a generic triboelectric sensor module (TSM) is developed toward managing the high output of TENG into signals that can be directly utilized by commercial electronics. Finally, an IoT‐based smart switching system is realized by integrating the TSM with a typical vertical contact–separation mode TENG and microcontroller, which is able to monitor the real‐time appliance status and location information. Such design of a universal energy solution for triboelectric sensors is applicable for managing and normalizing the wide output range generated from various working modes of TENGs and suitable for facile integration with IoT platform, representing a significant step toward scaling up TENG applications in future smart sensing. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|