The equivalence of F a $F_{a}$ -frames

Autor: Tufail Hussain, Yun-Zhang Li
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Journal of Inequalities and Applications, Vol 2020, Iss 1, Pp 1-14 (2020)
Druh dokumentu: article
ISSN: 1029-242X
DOI: 10.1186/s13660-020-02331-x
Popis: Abstract Structured frames such as wavelet and Gabor frames in L 2 ( R ) $L^{2}(\mathbb {R})$ have been extensively studied. But L 2 ( R + ) $L^{2}(\mathbb{ R}_{+})$ cannot admit wavelet and Gabor systems due to R + $\mathbb{R}_{+}$ being not a group under addition. In practice, L 2 ( R + ) $L^{2}(\mathbb{R}_{+})$ models the causal signal space. The function-valued inner product-based F a $F_{a}$ -frame for L 2 ( R + ) $L^{2}(\mathbb{R}_{+})$ was first introduced by Hasankhani Fard and Dehghan, where an F a $F_{a}$ -frame was called a function-valued frame. In this paper, we introduce the notions of F a $F_{a}$ -equivalence and unitary F a $F_{a}$ -equivalence between F a $F_{a}$ -frames, and present a characterization of the F a $F_{a}$ -equivalence and unitary F a $F_{a}$ -equivalence. This characterization looks like that of equivalence and unitary equivalence between frames, but the proof is nontrivial due to the particularity of F a $F_{a}$ -frames.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje