Numerical Study on the Explosive Separation of Pyrotechnic Cutter

Autor: Shihui Xiong, Yaokun Ye, Yanhua Li, Yuquan Wen
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Shock and Vibration, Vol 2019 (2019)
Druh dokumentu: article
ISSN: 1070-9622
1875-9203
DOI: 10.1155/2019/2457854
Popis: Pyrotechnic cutters are widely used in the wrapping-band connecting structures of carrier rockets. In this article, a three-dimensional (3D) finite element model of a pyrotechnic cutter is proposed to determine the influence of the explosive dynamic fracture process and the cutter blade acceleration distance on the cutting effect, using AUTODYN finite element simulation software. Numerical simulations of the cutting process reveal that the initial shear speed, the maximal speed, and the speed at which the cutter connects the rod increase linearly with increasing distance between the cutter blade and the cutting board. As the distance increases, the difference between the initial cutting speed and the maximal speed of the cutter gradually decreases and effectively disappears for a distance of 8.5 mm. At this time, the acceleration effect of the gunpowder gas on the cutter is nearly maximal. When the distance between the cutter and the connecting rod is less than 7.5 mm, the cutting time decreases significantly with increasing spacing. For distances between 7.5 mm and 8.5 mm, the distance has little effect on the cutting time as it increases. There is a small increase in the cutting time, and it can be seen that there is an optimal distance between the cutter and the cutting board during the cutting process. The cutting effect is the strongest for this distance. For the cutter studied in this article, the optimal distance was 7.5 mm. In addition, numerical studies were also performed by varying the maximal cutting diameter of the connecting rod of the pyrotechnic cutter. The discrepancy between the simulation results and actual test data was under 10%, and the simulation result for the cut state of the connecting rod was also consistent with the test result. The simulation results in this article can deepen the understanding of the action mechanism and process of the pyrotechnic cutter and reveal the maximal cutting diameter of the connecting rod of the pyrotechnic cutter under different charging conditions. This provides a reference for future cutter design optimization.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje