All minimal [9,4] 2 -codes are hyperbolic quadrics

Autor: Valentino Smaldore
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Examples and Counterexamples, Vol 3, Iss , Pp 100097- (2023)
Druh dokumentu: article
ISSN: 2666-657X
DOI: 10.1016/j.exco.2022.100097
Popis: Minimal codes are being intensively studied in last years. [n,k]q-minimal linear codes are in bijection with strong blocking sets of size n in PG(k−1,q)and a lower bound for the size of strong blocking sets is given by (k−1)(q+1)≤n. In this note we show that all strong blocking sets of length 9 in PG(3,2)are the hyperbolic quadrics Q+(3,2).
Databáze: Directory of Open Access Journals