Autor: |
Gabriel Duette, Bonnie Hiener, Hannah Morgan, Fernando G. Mazur, Vennila Mathivanan, Bethany A. Horsburgh, Katie Fisher, Orion Tong, Eunok Lee, Haelee Ahn, Ansari Shaik, Rémi Fromentin, Rebecca Hoh, Charline Bacchus-Souffan, Najla Nasr, Anthony L. Cunningham, Peter W. Hunt, Nicolas Chomont, Stuart G. Turville, Steven G. Deeks, Anthony D. Kelleher, Timothy E. Schlub, Sarah Palmer |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
The Journal of Clinical Investigation, Vol 132, Iss 7 (2022) |
Druh dokumentu: |
article |
ISSN: |
1558-8238 |
DOI: |
10.1172/JCI154422 |
Popis: |
Despite long-term antiretroviral therapy (ART), HIV-1 persists within a reservoir of CD4+ T cells that contribute to viral rebound if treatment is interrupted. Identifying the cellular populations that contribute to the HIV-1 reservoir and understanding the mechanisms of viral persistence are necessary to achieve an effective cure. In this regard, through Full-Length Individual Proviral Sequencing, we observed that the HIV-1 proviral landscape was different and changed with time on ART across naive and memory CD4+ T cell subsets isolated from 24 participants. We found that the proportion of genetically intact HIV-1 proviruses was higher and persisted over time in effector memory CD4+ T cells when compared with naive, central, and transitional memory CD4+ T cells. Interestingly, we found that escape mutations remained stable over time within effector memory T cells during therapy. Finally, we provided evidence that Nef plays a role in the persistence of genetically intact HIV-1. These findings posit effector memory T cells as a key component of the HIV-1 reservoir and suggest Nef as an attractive therapeutic target. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|