Popis: |
In the current agricultural landscape, a significant portion of tomato plants suffer from leaf diseases, posing a major challenge to manual detection due to the task’s extensive scope. Existing detection algorithms struggle to balance speed with accuracy, especially when identifying small-scale leaf diseases across diverse settings. Addressing this need, this study presents FCHF-DETR (Faster-Cascaded-attention-High-feature-fusion-Focaler Detection-Transformer), an innovative, high-precision, and lightweight detection algorithm based on RT-DETR-R18 (Real-Time-Detection-Transformer-ResNet18). The algorithm was developed using a carefully curated dataset of 3147 RGB images, showcasing tomato leaf diseases across a range of scenes and resolutions. FasterNet replaces ResNet18 in the algorithm’s backbone network, aimed at reducing the model’s size and improving memory efficiency. Additionally, replacing the conventional AIFI (Attention-based Intra-scale Feature Interaction) module with Cascaded Group Attention and the original CCFM (CNN-based Cross-scale Feature-fusion Module) module with HSFPN (High-Level Screening-feature Fusion Pyramid Networks) in the Efficient Hybrid Encoder significantly enhanced detection accuracy without greatly affecting efficiency. To tackle the challenge of identifying challenging samples, the Focaler-CIoU loss function was incorporated, refining the model’s performance throughout the dataset. Empirical results show that FCHF-DETR achieved 96.4% Precision, 96.7% Recall, 89.1% mAP (Mean Average Precision) 50-95 and 97.2% mAP50 on the test set, with a reduction of 9.2G in FLOPs (floating point of operations) and 3.6M in parameters. These findings clearly demonstrate that the proposed method improves detection accuracy and reduces computational complexity, addressing the dual challenges of precision and efficiency in tomato leaf disease detection. |