MGARD: A multigrid framework for high-performance, error-controlled data compression and refactoring

Autor: Qian Gong, Jieyang Chen, Ben Whitney, Xin Liang, Viktor Reshniak, Tania Banerjee, Jaemoon Lee, Anand Rangarajan, Lipeng Wan, Nicolas Vidal, Qing Liu, Ana Gainaru, Norbert Podhorszki, Richard Archibald, Sanjay Ranka, Scott Klasky
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: SoftwareX, Vol 24, Iss , Pp 101590- (2023)
Druh dokumentu: article
ISSN: 2352-7110
DOI: 10.1016/j.softx.2023.101590
Popis: We describe MGARD, a software providing MultiGrid Adaptive Reduction for floating-point scientific data on structured and unstructured grids. With exceptional data compression capability and precise error control, MGARD addresses a wide range of requirements, including storage reduction, high-performance I/O, and in-situ data analysis. It features a unified application programming interface (API) that seamlessly operates across diverse computing architectures. MGARD has been optimized with highly-tuned GPU kernels and efficient memory and device management mechanisms, ensuring scalable and rapid operations.
Databáze: Directory of Open Access Journals