Autor: |
Qian Gong, Jieyang Chen, Ben Whitney, Xin Liang, Viktor Reshniak, Tania Banerjee, Jaemoon Lee, Anand Rangarajan, Lipeng Wan, Nicolas Vidal, Qing Liu, Ana Gainaru, Norbert Podhorszki, Richard Archibald, Sanjay Ranka, Scott Klasky |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
SoftwareX, Vol 24, Iss , Pp 101590- (2023) |
Druh dokumentu: |
article |
ISSN: |
2352-7110 |
DOI: |
10.1016/j.softx.2023.101590 |
Popis: |
We describe MGARD, a software providing MultiGrid Adaptive Reduction for floating-point scientific data on structured and unstructured grids. With exceptional data compression capability and precise error control, MGARD addresses a wide range of requirements, including storage reduction, high-performance I/O, and in-situ data analysis. It features a unified application programming interface (API) that seamlessly operates across diverse computing architectures. MGARD has been optimized with highly-tuned GPU kernels and efficient memory and device management mechanisms, ensuring scalable and rapid operations. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|