Analysis of Soft Skills and Job Level with Data Science: A Case for Graduates of a Private University

Autor: Sofía Ramos-Pulido, Neil Hernández-Gress, Gabriela Torres-Delgado
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Informatics, Vol 10, Iss 1, p 23 (2023)
Druh dokumentu: article
ISSN: 2227-9709
DOI: 10.3390/informatics10010023
Popis: This study shows the significant features predicting graduates’ job levels, particularly high-level positions. Moreover, it shows that data science methodologies can accurately predict graduate outcomes. The dataset used to analyze graduate outcomes was derived from a private educational institution survey. The original dataset contains information on 17,898 graduates and approximately 148 features. Three machine learning algorithms, namely, decision trees, random forest, and gradient boosting, were used for data analysis. These three machine learning models were compared with ordinal regression. The results indicate that gradient boosting is the best predictive model, which is 6% higher than the ordinal regression accuracy. The SHapley Additive exPlanations (SHAP), a novel methodology to extract the significant features of different machine learning algorithms, was then used to extract the most important features of the gradient boosting model. Current salary is the most important feature in predicting job levels. Interestingly, graduates who realized the importance of communication skills and teamwork to be good leaders also had higher job positions. Finally, general relevant features to predict job levels include the number of people directly in charge, company size, seniority, and satisfaction with income.
Databáze: Directory of Open Access Journals