Design of double functionalized carbon nanotube for amphotericin B and genetic material delivery

Autor: Sara Yazdani, Mehrdad Mozaffarian, Gholamreza Pazuki, Naghmeh Hadidi, Idoia Gallego, Gustavo Puras, Jose Luis Pedraz
Jazyk: angličtina
Rok vydání: 2022
Předmět:
Zdroj: Scientific Reports, Vol 12, Iss 1, Pp 1-15 (2022)
Druh dokumentu: article
ISSN: 2045-2322
DOI: 10.1038/s41598-022-25222-1
Popis: Abstract In the present work, single wall carbon nanotubes (SWCNT) were successively functionalized with phospholipid DSPE-PEG carboxylic acid, and then, with ethylenediamine (EDA), to obtain double functionalized single wall carbon nanotube (DFSWCNT). Then, DFSWCNT was applied as a carrier for delivering amphotericin B (Amb) and EGFP plasmid. FSWCNT’s concentration obtained via UV–visible analysis was 0.99 mg/mL. The TGA analysis results provided the lost weights of DSPE-PEG-COOH, EDA, Amb and SWCNT impurities. XPS results showed that carbon atoms’ percentage decreased during the functionalization processes from 97.2% (SWCNT) to 76.4% (FSWCNT) and 69.9% (DFSWNCT). Additionally, the oxygen atoms’ percentage increased from 2.3% (SWCNT) to 21% and 22.5% for FSWCNT and DFSWCNT, respectively. New bonds such as C–N and N–C=O appeared in the synthesized nanocarrier. The IG/ID ratio in Raman analysis decreased from 7.15 (SWCNT) to 4.08 (FSWCNT). The amount of Amb released to phosphate buffer saline medium was about 33% at pH = 5.5 and 75% at pH = 7.4 after 48 h. CCK8 results confirmed that the toxicity of functionalized SWCNT had decreased. In a 2:1 ratio of DFSWCNT/EGFP plasmid, the cell viability (87%) and live transfected cells (56%) were at their maximum values. The results indicate that carbon nanotubes have the potential to be applied as drug/gene delivery systems with outstanding properties such as high loading capacity and easy penetration to cell membrane.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje