Optimizing smart building energy management systems through industry 4.0: A response surface methodology approach

Autor: Mohammad Seraj, Mohd Parvez, Osama Khan, Zeinebou Yahya
Jazyk: angličtina
Rok vydání: 2024
Předmět:
Zdroj: Green Technologies and Sustainability, Vol 2, Iss 2, Pp 100079- (2024)
Druh dokumentu: article
ISSN: 2949-7361
DOI: 10.1016/j.grets.2024.100079
Popis: Effective control of inner climatic conditions in a Heating ventilation and air conditioning (HVAC) system based on efficiency of the system is imperative to ensure occupant comfort, energy efficiency, and preservation of indoor air quality. The existing problems with HVAC system includes inefficient adjustment to internal room parameters and limited optimization based on varying loads. The current study investigates the influence of Industry 4.0 by assessing internal room parameters in an indoor ventilated room conditions for system output. Smart systems like AI and IoT, integrated with sensors, dynamically adjust indoor conditions based on external climate, enhancing HVAC system efficiency. Using Artificial Neural Networks (ANN) and Response Surface Methodology (RSM), integrated with AI and IoT sensors, optimally adjust indoor conditions in correlation with external climate, maximizing HVAC system efficiency. The study utilizes input parameters including Dry Bulb Temperature (DBT), Relative Humidity (RH), and Solar Radiation across diverse days to analyze system efficiency. ANN and RSM iteratively optimize system efficiency by training on RH, DBT, and air quality data. They converge on recommending 42% RH, 28 °C DBT, and 25 PM air quality, achieving 0.851 desirability. This approach enhances heat load (75.89%) and ventilation load (69.12%) efficiency significantly. Integration of Industry 4.0 sensors in the HVAC system resulted in a 16% efficiency increase and 15% cost effectiveness in the controlled room compared to prior measurements.
Databáze: Directory of Open Access Journals