COMPUTING THE EIGENVALUES OF CAYLEY GRAPHS OF ORDER p2q
Autor: | M. Ghorbani, A. Seyyed-Hadi, F. Nowroozi-Larki |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Journal of Algebraic Systems, Vol 7, Iss 2, Pp 189-203 (2020) |
Druh dokumentu: | article |
ISSN: | 2345-5128 2345-511X |
DOI: | 10.22044/jas.2019.7034.1344 |
Popis: | A graph is called symmetric if its full automorphism group acts transitively on the set of arcs. The Cayley graph $Gamma=Cay(G,S)$ on group $G$ is said to be normal symmetric if $N_A(R(G))=R(G)rtimes Aut(G,S)$ acts transitively on the set of arcs of $Gamma$. In this paper, we classify all connected tetravalent normal symmetric Cayley graphs of order $p^2q$ where $p>q$ are prime numbers. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |