Development of a Variable Valve Actuation Control to Improve Diesel Oxidation Catalyst Efficiency and Emissions in a Light Duty Diesel Engine

Autor: José R. Serrano, Francisco J. Arnau, Jaime Martín, Ángel Auñón
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Energies, Vol 13, Iss 17, p 4561 (2020)
Druh dokumentu: article
ISSN: 1996-1073
DOI: 10.3390/en13174561
Popis: Growing interest has arisen to adopt Variable Valve Timing (VVT) technology for automotive engines due to the need to fulfill the pollutant emission regulations. Several VVT strategies, such as the exhaust re-opening and the late exhaust closing, can be used to achieve an increment in the after-treatment upstream temperature by increasing the residual gas amount. In this study, a one-dimensional gas dynamics engine model has been used to simulate several VVT strategies and develop a control system to actuate over the valves timing in order to increase diesel oxidation catalyst efficiency and reduce the exhaust pollutant emissions. A transient operating conditions comparison, taking the Worldwide Harmonized Light-Duty Vehicles Test Cycle (WLTC) as a reference, has been done by analyzing fuel economy, HC and CO pollutant emissions levels. The results conclude that the combination of an early exhaust and a late intake valve events leads to a 20% reduction in CO emissions with a fuel penalty of 6% over the low speed stage of the WLTC, during the warm-up of the oxidation catalyst. The same set-up is able to reduce HC emissions down to 16% and NOx emission by 13%.
Databáze: Directory of Open Access Journals
Nepřihlášeným uživatelům se plný text nezobrazuje