Visit Recommendation Model: Recursive K-Means Clustering Analysis of Retail Sales Data

Autor: Bagus Kristomoyo Kristanto, Syntia Widyayuningtias Putri Listio, Mukhlis Amien, Panji Iman Baskoro
Jazyk: English<br />Indonesian
Rok vydání: 2024
Předmět:
Zdroj: Journal of Applied Informatics and Computing, Vol 8, Iss 1, Pp 221-225 (2024)
Druh dokumentu: article
ISSN: 2548-6861
DOI: 10.30871/jaic.v8i1.8138
Popis: In the context of retail distribution, this study employs recursive K-means clustering on retail sales data to optimize clusters of nearest-distance stores for salesperson route recommendations. This approach addresses the stochastic salesperson problem by generating effective routes, enhancing cost reduction, and improving service efficiency. The recursive K-means algorithm dynamically adjusts to continuous changes in store numbers, locations, and transaction data. Consequently, this research successfully developed a model that automatically re-clusters the data with each change, providing continuously updated and effective store recommendations.
Databáze: Directory of Open Access Journals