Autor: |
Bagus Kristomoyo Kristanto, Syntia Widyayuningtias Putri Listio, Mukhlis Amien, Panji Iman Baskoro |
Jazyk: |
English<br />Indonesian |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Journal of Applied Informatics and Computing, Vol 8, Iss 1, Pp 221-225 (2024) |
Druh dokumentu: |
article |
ISSN: |
2548-6861 |
DOI: |
10.30871/jaic.v8i1.8138 |
Popis: |
In the context of retail distribution, this study employs recursive K-means clustering on retail sales data to optimize clusters of nearest-distance stores for salesperson route recommendations. This approach addresses the stochastic salesperson problem by generating effective routes, enhancing cost reduction, and improving service efficiency. The recursive K-means algorithm dynamically adjusts to continuous changes in store numbers, locations, and transaction data. Consequently, this research successfully developed a model that automatically re-clusters the data with each change, providing continuously updated and effective store recommendations. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|