Self-Supervised Steering and Path Labeling for Autonomous Driving
Autor: | Andrei Mihalea, Robert-Florian Samoilescu, Adina Magda Florea |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2023 |
Předmět: | |
Zdroj: | Sensors, Vol 23, Iss 20, p 8473 (2023) |
Druh dokumentu: | article |
ISSN: | 23208473 1424-8220 |
DOI: | 10.3390/s23208473 |
Popis: | Autonomous driving is a complex task that requires high-level hierarchical reasoning. Various solutions based on hand-crafted rules, multi-modal systems, or end-to-end learning have been proposed over time but are not quite ready to deliver the accuracy and safety necessary for real-world urban autonomous driving. Those methods require expensive hardware for data collection or environmental perception and are sensitive to distribution shifts, making large-scale adoption impractical. We present an approach that solely uses monocular camera inputs to generate valuable data without any supervision. Our main contributions involve a mechanism that can provide steering data annotations starting from unlabeled data alongside a different pipeline that generates path labels in a completely self-supervised manner. Thus, our method represents a natural step towards leveraging the large amounts of available online data ensuring the complexity and the diversity required to learn a robust autonomous driving policy. |
Databáze: | Directory of Open Access Journals |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |