Predicting motor outcome in preterm infants from very early brain diffusion MRI using a deep learning convolutional neural network (CNN) model

Autor: Susmita Saha, Alex Pagnozzi, Pierrick Bourgeat, Joanne M. George, DanaKai Bradford, Paul B. Colditz, Roslyn N. Boyd, Stephen E. Rose, Jurgen Fripp, Kerstin Pannek
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: NeuroImage, Vol 215, Iss , Pp 116807- (2020)
Druh dokumentu: article
ISSN: 1095-9572
DOI: 10.1016/j.neuroimage.2020.116807
Popis: Background and aims: Preterm birth imposes a high risk for developing neuromotor delay. Earlier prediction of adverse outcome in preterm infants is crucial for referral to earlier intervention. This study aimed to predict abnormal motor outcome at 2 years from early brain diffusion magnetic resonance imaging (MRI) acquired between 29 and 35 weeks postmenstrual age (PMA) using a deep learning convolutional neural network (CNN) model. Methods: Seventy-seven very preterm infants (born
Databáze: Directory of Open Access Journals