Autor: |
Susmita Saha, Alex Pagnozzi, Pierrick Bourgeat, Joanne M. George, DanaKai Bradford, Paul B. Colditz, Roslyn N. Boyd, Stephen E. Rose, Jurgen Fripp, Kerstin Pannek |
Jazyk: |
angličtina |
Rok vydání: |
2020 |
Předmět: |
|
Zdroj: |
NeuroImage, Vol 215, Iss , Pp 116807- (2020) |
Druh dokumentu: |
article |
ISSN: |
1095-9572 |
DOI: |
10.1016/j.neuroimage.2020.116807 |
Popis: |
Background and aims: Preterm birth imposes a high risk for developing neuromotor delay. Earlier prediction of adverse outcome in preterm infants is crucial for referral to earlier intervention. This study aimed to predict abnormal motor outcome at 2 years from early brain diffusion magnetic resonance imaging (MRI) acquired between 29 and 35 weeks postmenstrual age (PMA) using a deep learning convolutional neural network (CNN) model. Methods: Seventy-seven very preterm infants (born |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|