Autor: |
Russell W. Mellen, Kaitlyn R. Calabro, K. Tyler McCullough, Sean M. Crosson, Alejandro de la Cova, Diego Fajardo, Emily Xu, Sanford L. Boye, Shannon E. Boye |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Molecular Therapy: Methods & Clinical Development, Vol 30, Iss , Pp 48-64 (2023) |
Druh dokumentu: |
article |
ISSN: |
2329-0501 |
DOI: |
10.1016/j.omtm.2023.05.020 |
Popis: |
Cone-rod dystrophy 6 (CORD6) is caused by gain-of-function mutations in the GUCY2D gene, which encodes retinal guanylate cyclase-1 (RetGC1). There are currently no treatments available for this autosomal dominant disease, which is characterized by severe, early-onset visual impairment. The purpose of our study was to develop an adeno-associated virus (AAV)-CRISPR-Cas9-based approach referred to as “ablate and replace” and evaluate its therapeutic potential in mouse models of CORD6. This two-vector system delivers (1) CRISPR-Cas9 targeted to the early coding sequence of the wild-type and mutant GUCY2D alleles and (2) a CRISPR-Cas9-resistant cDNA copy of GUCY2D (“hardened” GUCY2D). Together, these vectors knock out (“ablate”) expression of endogenous RetGC1 in photoreceptors and supplement (“replace”) a healthy copy of exogenous GUCY2D. First, we confirmed that ablation of mutant R838S GUCY2D was therapeutic in a transgenic mouse model of CORD6. Next, we established a proof of concept for “ablate and replace” and optimized vector doses in Gucy2e+/−:Gucy2f−/− and Gucy2f−/− mice, respectively. Finally, we confirmed that the “ablate and replace” approach stably preserved retinal structure and function in a novel knockin mouse model of CORD6, the RetGC1 (hR838S, hWT) mouse. Taken together, our results support further development of the “ablate and replace” approach for treatment of CORD6. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|