Self-damping of the relaxation oscillations in miniature pulsed transmitter for sub-nanosecond-precision, long-distance LIDAR

Autor: Sergey Vainshtein, Guoyong Duan, Timo Rahkonen, Zachary Taylor, Valery Zemlyakov, Vladimir Egorkin, Olga Smolyanskaya, Thomas Skotnicki, Wojciech Knap
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Results in Physics, Vol 19, Iss , Pp 103509- (2020)
Druh dokumentu: article
ISSN: 2211-3797
DOI: 10.1016/j.rinp.2020.103509
Popis: Peak power is a critical factor for sub-nanosecond-pulsed transmitters utilizing laser diodes (LD) and applied to long distance LIDARs (light detection and ranging) for drones and automotive applications. Receiver speed is not anymore a limiting factor thanks to replacing linear (typically avalanche) detectors and a broad-band amplifier with a single photon avalanche detector (SPAD). Consequently the transmitters become the bottle neck in the resolution and ranging. The simplest and lowest-possible-cost transmitter consists of a switch, an LD, a storage capacitor C, and unavoidable parasitic loop inductance L. In the resulting resonant circuit, the principal problem consists of suppressing relaxation oscillations. Traditional way of oscillation damping reduce peak current and increase the pulse width. Here we show that specific transient properties of a Si avalanche switch solves the problem automatically provided the inductance is sufficiently low. This finding advances the state-of-the-art by reaching 90 W/1ns/200 kHz pulses from a miniature low-cost transmitter based on Si avalanching bipolar junction transistor (ABJT). Besides, the same self-damping effect may be realized in other switches maintaining significant residual voltage despite of fast current reduction.
Databáze: Directory of Open Access Journals