Autor: |
Masaya Asano, Serika Motoike, Chika Yokota, Naoto Usuki, Hikaru Yamamoto, Tomoaki Urabe, Kazusa Katarao, Izumi Hide, Shigeru Tanaka, Masashi Kawamoto, Masahiro Irifune, Norio Sakai |
Jazyk: |
angličtina |
Rok vydání: |
2019 |
Předmět: |
|
Zdroj: |
Journal of Pharmacological Sciences, Vol 139, Iss 1, Pp 29-36 (2019) |
Druh dokumentu: |
article |
ISSN: |
1347-8613 |
DOI: |
10.1016/j.jphs.2018.11.005 |
Popis: |
The serotonin transporter (SERT) is functionally regulated via membrane trafficking. Our previous studies have demonstrated that the SERT C-terminal deletion mutant (SERTΔCT) showed a robust decrease in its membrane trafficking and was retained in the endoplasmic reticulum (ER), suggesting that SERTΔCT is an unfolded protein that may cause ER stress. The Sigma-1 receptor (SigR1) has been reported to attenuate ER stress via its chaperone activity. In this study, we investigated the effects of SKF-10047, a prototype SigR1 agonist, on the membrane trafficking and uptake activity of SERT and SERTΔCT expressed in COS-7 cells. Twenty-four hours of SKF-10047 treatment (>200 μM) accelerated SERT membrane trafficking and robustly upregulated SERTΔCT activity. Interestingly, these effects of SKF-10047 on SERT functions were also found in cells in which SigR1 expression was knocked down by shRNA, suggesting that SKF-10047 exerted these effects on SERT via a mechanism independent of SigR1. A cDNA array study identified several candidate genes involved in the mechanism of action of SKF-10047. Among them, Syntaxin3, a member of the SNARE complex, was significantly upregulated by 48 h of SKF-10047 treatment. These results suggest that SKF-10047 is a candidate for ER stress relief. Keywords: Serotonin transporter, Sigma-1 receptor, Membrane trafficking, SKF-10047 |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|