Autor: |
David Makowski, Rui Catarino, Mathilde Chen, Simona Bosco, Ana Montero-Castaño, Marta Pérez-Soba, Andrea Schievano, Giovanni Tamburini |
Jazyk: |
angličtina |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Environmental Evidence, Vol 12, Iss 1, Pp 1-14 (2023) |
Druh dokumentu: |
article |
ISSN: |
2047-2382 |
DOI: |
10.1186/s13750-023-00309-y |
Popis: |
Abstract Statistical synthesis of data sets (meta-analysis, MA) has become a popular approach for providing scientific evidence to inform environmental and agricultural policy. As the number of published MAs is increasing exponentially, multiple MAs are now often available on a specific topic, delivering sometimes conflicting conclusions. To synthesise several MAs, a first approach is to extract the primary data of all the MAs and make a new MA of all data. However, this approach is not always compatible with the short period of time available to respond to a specific policy request. An alternative, and faster, approach is to synthesise the results of the MAs directly, without going back to the primary data. However, the reliability of this approach is not well known. In this paper, we evaluate three fast-track methods for synthesising the results of MAs without using the primary data. The performances of these methods are then compared to a global MA of primary data. Results show that two of the methods tested can yield similar conclusions when compared to global MA of primary data, especially when the level of redundancy between MAs is low. We show that the use of biased MAs can reduce the reliability of the conclusions derived from these methods. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|