Automatic selection of parameters in LLE

Autor: Juliana Valencia Aguirre, Andrés Marino Álvarez Meza, Genaro Daza Santacoloma, Carlos Daniel Acosta Medina, Germán Castellanos Domínguez
Jazyk: angličtina
Rok vydání: 2013
Předmět:
Zdroj: Revista Facultad de Ingeniería Universidad de Antioquia, Iss 56 (2013)
Druh dokumentu: article
ISSN: 0120-6230
2422-2844
DOI: 10.17533/udea.redin.14665
Popis: Locally Linear Embedding (LLE) is a nonlinear dimensionality reduction technique, which preserves the local geometry of high dimensional space performing an embedding to low dimensional space. LLE algorithm has 3 free parameters that must be set to calculate the embedding: the number of nearest neighbors k, the output space dimensionality m and the regularization parameter a. The last one only is necessary when the value of k is greater than the dimensionality of input space or data are not located in general position, and it plays an important role in the embedding results. In this paper we propose a pair of criteria to find the optimum value for the parameters kand a, to obtain an embedding that faithfully represent the input data space. Our approaches are tested on 2 artificial data sets and 2 real world data sets to verify the effectiveness of the proposed criteria, besides the results are compared against methods found in the state of art.
Databáze: Directory of Open Access Journals