Drought Monitoring and Prediction using K-Nearest Neighbor Algorithm
Autor: | E. Fadaei-Kermani, G. A Barani, M. Ghaeini-Hessaroeyeh |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: | |
Zdroj: | Journal of Artificial Intelligence and Data Mining, Vol 5, Iss 2, Pp 319-325 (2017) |
Druh dokumentu: | article |
ISSN: | 2322-5211 2322-4444 |
DOI: | 10.22044/jadm.2017.881 |
Popis: | Drought is a climate phenomenon which might occur in any climate condition and all regions on the earth. Effective drought management depends on the application of appropriate drought indices. Drought indices are variables which are used to detect and characterize drought conditions. In this study, it was tried to predict drought occurrence, based on the standard precipitation index (SPI), using k-nearest neighbor modeling. The model was tested by using precipitation data of Kerman, Iran. Results showed that the model gives reasonable predictions of drought situation in the region. Finally, the efficiency and precision of the model was quantified by some statistical coefficients. Appropriate values of the correlation coefficient (r=0.874), mean absolute error (MAE=0.106), root mean square error (RMSE=0.119) and coefficient of residual mass (CRM=0.0011) indicated that the present model is suitable and efficient |
Databáze: | Directory of Open Access Journals |
Externí odkaz: |