Autor: |
Francisco Rivero-Rodríguez, Antonio Díaz-Quintana, Alejandro Velázquez-Cruz, Katiuska González-Arzola, Maria P. Gavilan, Adrián Velázquez-Campoy, Rosa M. Ríos, Miguel A. De la Rosa, Irene Díaz-Moreno |
Jazyk: |
angličtina |
Rok vydání: |
2021 |
Předmět: |
|
Zdroj: |
Redox Biology, Vol 43, Iss , Pp 101967- (2021) |
Druh dokumentu: |
article |
ISSN: |
2213-2317 |
DOI: |
10.1016/j.redox.2021.101967 |
Popis: |
Repair of injured DNA relies on nucleosome dismantling by histone chaperones and de-phosphorylation events carried out by Protein Phosphatase 2A (PP2A). Typical histone chaperones are the Acidic leucine-rich Nuclear Phosphoprotein 32 family (ANP32) members, e.g. ANP32A, which is also a well-known PP2A inhibitor (a.k.a. I1PP2A). Here we report the novel interaction between the endogenous family member B—so-called ANP32B—and endogenous cytochrome c in cells undergoing camptothecin-induced DNA damage. Soon after DNA lesions but prior to caspase cascade activation, the hemeprotein translocates to the nucleus to target the Low Complexity Acidic Region (LCAR) of ANP32B; in a similar way, our group recently reported that the hemeprotein targets the acidic domain of SET/Template Activating Factor-Iβ (SET/TAF-Iβ), which is another histone chaperone and PP2A inhibitor (a.k.a. I2PP2A). The nucleosome assembly activity of ANP32B is indeed unaffected by cytochrome c binding. Like ANP32A, ANP32B inhibits PP2A activity and is thus herein referred to as I3PP2A. Our data demonstrates that ANP32B-dependent inhibition of PP2A is regulated by respiratory cytochrome c, which induces long-distance allosteric changes in the structured N-terminal domain of ANP32B upon binding to the C-terminal LCAR. In agreement with the reported role of PP2A in the DNA damage response, we propose a model wherein cytochrome c is translocated from the mitochondria into the nucleus upon DNA damage to modulate PP2A activity via its interaction with ANP32B. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|