Berezinskii-Kosterlitz-Thouless transitions in an easy-plane ferromagnetic superfluid

Autor: Andrew P. C. Underwood, Andrew J. Groszek, Xiaoquan Yu, P. B. Blakie, L. A. Williamson
Jazyk: angličtina
Rok vydání: 2023
Předmět:
Zdroj: Physical Review Research, Vol 5, Iss 1, p L012045 (2023)
Druh dokumentu: article
ISSN: 2643-1564
DOI: 10.1103/PhysRevResearch.5.L012045
Popis: A two-dimensional spin-1 Bose gas exhibits two Berezinskii-Kosterlitz-Thouless (BKT) transitions in the easy-plane ferromagnetic phase. The higher-temperature transition is associated with superfluidity of the mass current determined predominantly by a single spin component. The lower-temperature transition is associated with superfluidity of the axial spin current, quasi-long-range order of the transverse spin density, and binding of polar-core spin vortices (PCVs). Above the spin BKT temperature, the component circulations that make up each PCV spatially separate, suggesting possible deconfinement analogous to quark deconfinement in high-energy physics. Intercomponent interactions give rise to superfluid drag between the spin components, which we calculate analytically at zero temperature. We present the mass and spin superfluid phase diagram as a function of quadratic Zeeman energy q. At q=0 the system is in an isotropic spin phase with SO(3) symmetry. Here the fluid response exhibits a system size dependence, suggesting the absence of a BKT transition. Despite this, for finite systems the decay of spin correlations changes from exponential to algebraic as the temperature is decreased.
Databáze: Directory of Open Access Journals