Autor: |
Gang Zhao, Jianyu Jiao, Yan Wu, Fengmei Bai, Hongwei Zhou, Jun Xue, Yixuan Zhu, Guangwen Zheng |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Crystals, Vol 14, Iss 11, p 977 (2024) |
Druh dokumentu: |
article |
ISSN: |
2073-4352 |
DOI: |
10.3390/cryst14110977 |
Popis: |
Pearlitic steel rods are subjected to cold-drawing processes to produce pearlitic steel wires with true strains ranging from 0.81 to 2.18. Tensile tests are utilized to attain mechanical properties of cold-drawn pearlitic steel wires. TEM and XRD investigations were performed on the microstructure of the cold-drawn steel wires. With an increasing cold-drawn strain, both the interlamellar spacing and cementite lamellae thickness decrease, while the dislocation density significantly increases. The drawn wire has a tensile strength of 2170 MPa when the true stain reaches 2.18. Deformation-induced cementite dissolution occurs during cold-drawing progress, which releases many C atoms. The findings indicate that the supersaturation of C is heterogeneously distributed in the ferrite matrix. The ordered distribution of the released C in ferrite phases creates short-range order (SRO). SRO clusters and disordered Cottrell atmospheres contribute to solution strengthening, which, together with dislocation strengthening and interlamellar boundary strengthening, form an effective strengthening mechanism in cold-drawn pearlitic steel wires. Our work provides new insights into carbon redistribution and the mechanism of solution strengthening within ferrous phases. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|