Autor: |
Vladimir E. Fedorov, Nadezhda M. Skripka |
Jazyk: |
angličtina |
Rok vydání: |
2024 |
Předmět: |
|
Zdroj: |
Mathematics, Vol 12, Iss 4, p 572 (2024) |
Druh dokumentu: |
article |
ISSN: |
2227-7390 |
DOI: |
10.3390/math12040572 |
Popis: |
New classes of evolution differential equations with the Liouville derivative in Banach spaces are studied. Equations are considered on the whole real line and are not endowed by the initial conditions. Using the methods of the Fourier transform theory, we prove the unique solvability in the sense of classical solutions for the equation solved with respect to the Liouville fractional derivative with a bounded operator at the unknown function. This allows us to obtain the analogous result for the equation with a linear degenerate operator at the fractional derivative and with a spectrally bounded pair of operators. Abstract results are applied to obtain new results on the unique solvability of systems of ordinary differential equations, boundary problems to partial differential equations, and systems of equations. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|