Autor: |
G. Tamburello, G. Chiodini, G. Ciotoli, M. Procesi, D. Rouwet, L. Sandri, N. Carbonara, C. Masciantonio |
Jazyk: |
angličtina |
Rok vydání: |
2022 |
Předmět: |
|
Zdroj: |
Nature Communications, Vol 13, Iss 1, Pp 1-9 (2022) |
Druh dokumentu: |
article |
ISSN: |
2041-1723 |
DOI: |
10.1038/s41467-022-34115-w |
Popis: |
Data from 6000 geothermal areas worldwide are analyzed with a machine learning approach. The analysis suggests and confirms a dominant role of the terrestrial heat flow, topography, volcanism and extensional tectonics. |
Databáze: |
Directory of Open Access Journals |
Externí odkaz: |
|